Mining Changes and Connections using Rough Set Theory

نویسنده

  • Ken Kaneiwa
چکیده

Mining data changes and connections from information systems (or databases) is made difficult by the different data behaviors and relationships across multiple data sets. When making a decision, such a dynamic and integrated knowledge base can be used to set useful rules (e.g., causality) that differ from the statistical associations in a single resource. In this paper, using techniques based on the rough set theory, we propose a change and connection mining algorithm for discovering a time delay between the quantitative changes in the data of two temporal information systems and for generating the association rules of changes from their connected decision table. We establish evaluation criteria for the connectedness of two temporal information systems with varying time delays by calculating weight-based accuracy and coverage of the association rules of changes, adjusted by a fuzzy membership function. keywords: rough set theory, fuzzy theory, change and connection mining, causality

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)

Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...

متن کامل

A rough set approach to multiple dataset analysis

In the area of data mining, the discovery of valuable changes and connections (e.g., causality) from multiple data sets has been recognized as an important issue. This issue essentially differs from finding statistical associations in a single data set because it is complicated by the different data behaviors and relationships across multiple data sets. Using rough set theory, this paper propos...

متن کامل

Topological structure on generalized approximation space related to n-arry relation

Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...

متن کامل

ارائه روشی ترکیبی برای افزایش دقت پیش‌بینی در کاهش داده با استفاده از مدل مجموعه راف و هوش تجمعی

Designing a system with an emphasis on minimal human intervention helps users to explore information quickly. Adverting to methods of analyzing large data is compulsory as well. Hence, utilizing power of the data mining process to identify patterns and models become more essential from aspect of relationship between the various elements in the database and discover hidden knowledge. Therefore, ...

متن کامل

Rough Set Theory In Data Mining Ppt

Rough set theory provides a useful mathematical concept to draw tends to serve well for data mining applications whereas the predictive model. The rough set toolkit for analysis of data (ROSETTA), which is an advanced machine learning algorithms for data mining tasks implemented in Java (33). Therefore, this paper presents the RoughSets package that allows researchers. Zdzislaw Pawlak, Rough Se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009